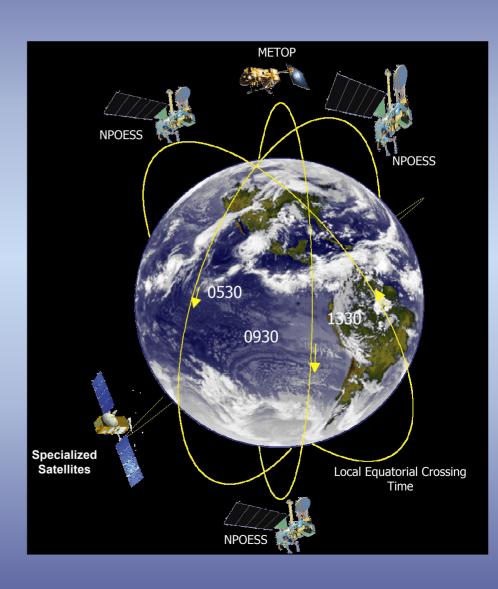


International Geoscience and Remote Sensing Symposium

Development of Data Product Algorithms for the National Polar-orbiting Operational Environmental Satellite System (NPOESS)

20 September 2004

Presented by: Pamela G. Emcha


Co-author: James L. Dudab

^aNorthrop Grumman Space Technology, Suite 815, 8455 Colesville Road, Silver Spring, MD 20910; ^bIntegrated Program Office, Suite 1450, 8455 Colesville Road, Silver Spring, MD 20910

NPOESS: The Next Generation of Polar-Orbiting Satellites

- Provide a national, operational, polar-orbiting remote sensing capability
- Converge DoD DMSP and NOAA POES satellite programs
- Incorporate new technologies from NASA
- Encourage International cooperation
- Base product requirements on user needs and Weather and other remote sensing mission heritage
- Goal of improving products and utility for the user

NPOESS Stored Mission Data (SMD) Will Produce 56 Environmental Data Records (EDRs)

Atm Vertical Temp Profile	Cloud Top Height	Ozone; Total Column/Profi	
Atm Vertical Moisture Profile	Cloud Top Pressure	Precipitable Water	
lmagery	Cloud Top Temperature	Precipitation Type/Rate	
Sea Surface Temperature	Downward LW Radiance (Sfc)	Pressure (Surface/Profile)	
Sea Surface Winds	Downward SW Radiance(Sfc) Sea Ice Characterization		
Soil Moisture	Electric Field	Sea Surface Height/Topo.	
Active Fires	Electron Density Profile	Snow Cover/Depth	
Aerosol Optical Thickness	Energetic lons	Solar Irradiance	
Aerosol Particle Size	Geomagnetic Field	Supra-Thermal-Auroral Par	
Aerosol Refractive Index	Ice Surface Temperature	Surface Type	
Albedo (Surface)	In-situ Plasma Fluctuations	Surface Wind Stress	
Auroral Boundary	In-situ Plasma Temperature	Suspended Matter	
Auroral Energy Deposition	Ionospheric Scintillation	Total Water Content	
Auroral Imagery	Medium Energy Charged Particles	Vegetation Index	
Cloud Base Height	Land Surface Temperature		
Cloud Cover/Layers	Net Heat Flux	VIIRS	
Cloud Effective Particle Size	Net Solar Radiation (TOA)	CMIS	
Cloud Ice Water Path	Neutral Density Profile	Cris/ATMS	
Cloud Liquid Water	Ocean Color/Chlorophyll	SESS	
		0200	

Ocean Wave Characteristics

Outgoing LW Radiation (TOA)

★ EDRs with NPOESS Key Performance Parameters NPP EDRs (26) in yellow font

Cloud Optical Thickness

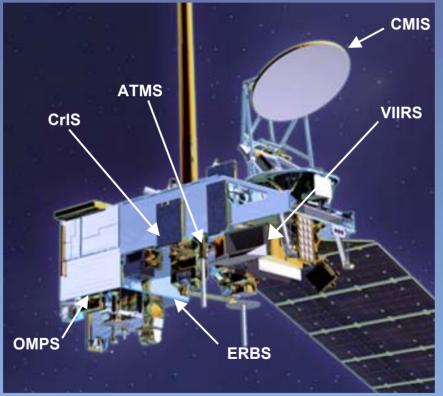
Cloud Particle Size/Distribution

rofile

Part.

A Single EDR is Comprised of Multiple Attributes with Associated Requirements

Example: Sea Surface Temperature (SST)


"Sea Surface Temperature is defined as a highly precise measurement of the temperature of the surface layer (upper 1 meter) of ocean water."

"The accompanying requirements apply only under clear conditions (unless specified otherwise)."

Systems Capabilities	<u>Thresholds</u>	<u>Objectives</u>
 a. Horizontal Cell Size 		
Nadir, clear	1 km	0.25 km
Worst case, clear	1.3 km	
All Weather	40 km	20 km
 Mapping Accuracy 		
Nadir, clear	1 km	0.1 km
Worst case, clear	1.3 km	
All Weather	5 km	3 km
c. Measurement Range	-2° to 40° C	-2° to 40° C
d. Measurement Precision		
Clear	0.2° C	0.1° C
All Weather	0.3°C	0.1 ° C
e. Measurement Uncertainty		
Clear	0.5° C	0.1° C
All Weather	1.0 ° C	0.5°C
f. Refresh	6 hours	3 hours
g. Long-Term Stability	0.1° C	.05º C
h. Latency	90 minutes	15 minutes
i. Geographic Coverage	Global Ocean	Global Ocean

NPOESS Sensor Manifest and Locations Were Chosen to Meet Mission Data Product and Design Requirements

NPOESS 1330 Configuration

	1330	1730	2130	NPP
VIIRS	X	X	X	X
CMIS	X	X	X	
CrIS	X	X		X
ATMS	X	X		X
SESS	X			
GPSOS	X			
OMPS	X			X
ADCS	X	X		
SARSAT	X	X	X	
ERBS	X			
SS	X	X	X	
ALT		X		
TSIS		X		
APS			X	

NPOESS Data Products, Sensors, and Algorithms are a Progression from Heritage Systems

The algorithms being developed for NPOESS leverage, whenever feasible, heritage product retrieval algorithms and scientific approaches from DMSP, POES, EOS, and other systems

- VIIRS (by Raytheon SBRS)
 - > MODIS (EOS), AVHRR (POES), OLS (DMSP)
- CMIS (by Boeing)
 - > SSMI & SSMIS (DMSP), AMSR-E (EOS), TMI (TRMM)
- CrIS (by ITT)
 - > AIRS (EOS), HIRS (POES), IASI (METOP)
- ATMS (by Northrop Grumman ES)
 - > AMSU-A/B (POES & EOS), SSM/T&T2 (DMSP)
- OMPS (by Ball ATC)
 - > TOVS (POES), TOMS, SBUV/2, OMI (EOS), GOME
- SESS (Integrated by Ball ATC)
 - ➤ SSM, SSI/ES, SSJ/5, SSULI, SSUSI, SEM,...
- GPSOS (by Saab Ericsson)
 - ➤ GRAS (METOP)
- ERBS (by Northrop Grumman ST)
 - > CERES (EOS), ERBE (POES)
- ALT (by Alcatel)
 - > Altimeter (TOPEX/Poseidon & Jason-1)
- TSIS (by LASP at Univ of Co.)
 - > SORCE, ACRIM
- APS (by Raytheon SBRS)
 - ➤ MODIS (EOS), POLDER (ADEOS), MISR (EOS)

Operational Algorithm Development, Test, and Verification Work Progresses Via Key Activities

Baseline Pre-Launch Operational Algorithm Performance on Data Processing System

Baseline "Prototype" Algorithm Performance (Science Algorithm)

Science
Algorithm
Development/
Procurement
(Develop Science
Algorithm
Package)

- Leverage Heritage
- Theoretical Basis Document
- · Science-grade code
- Test data

Science
Algorithm
Verification
(Verify and Baseline
Science Algorithm
Performance)

- Refine sciencegrade code
- Test results reports
- Performance Matrix: Comparison against Reg'ts

Science to
Operational
Algorithm
Migration
(Apply Rigorous
Software Practices
Taking "Prototype"
to Fully Operational)

- Implement s/w onto operational data processing h/w
- Common I/O formats
 & data interfaces
- Error handling & quality reporting
- Execution timing optimization
- Graceful degradation
- S/W Integration & Checkout

Pre-Launch
Operational
Algorithm
Performance
Verification
(Verify and Baseline
Operational
Algorithm
Performance)

- Final Pre-Launch updates from sensor characterization & calibration
- Test results reports
- Performance Matrix: Comparison against Reg'ts
- Execution timing performance:
 Comparison against Req'ts

Post-Launch
Operational
Algorithm
Cal/Val
&
Long Term
Operational
Algorithm
Assessment

- Post-Launch updates from sensor calibration
- Product validation
- Performance Matrix: Comparison against Reg'ts

Activities continue Post-Launch

Launch

Schedule for Algorithm Development, Test, and Verification Tasks is Integrated into NPP and NPOESS Program Schedule

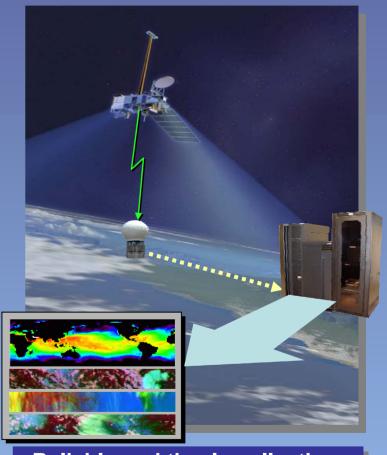
2002
A&O Contract Award

2003
NPP Critical Design Review

2005
NPOESS Preliminary Design Review

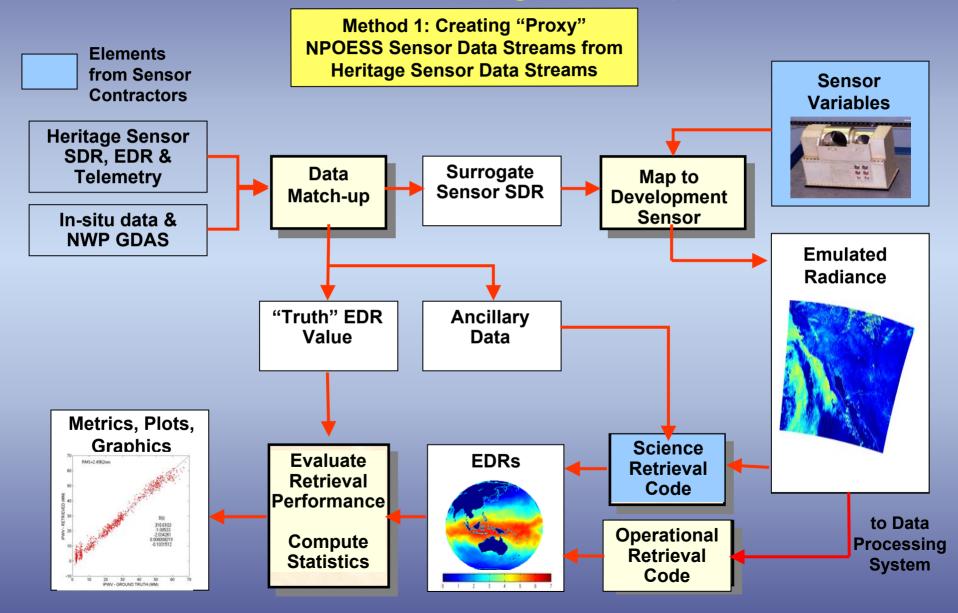
2006
NPOESS Critical Design Review
NPP Ground Readiness
NPP Test Readiness Review
NPP Launch

2007


NPP On-Orbit Verification Review

2009

NPOESS Ground Readiness

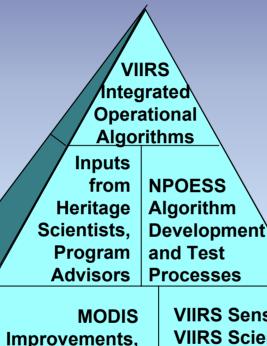

NPOESS C-1 Launch

2010
NPOESS C-1 On-Orbit Verif. Review

Reliable and timely collection, delivery, and processing of quality environmental data

A Variety of Methods are Used Pre-Launch to Predict Product Performance Against Requirements

A Variety of Methods are Used Pre-Launch to Predict Product Performance Against Requirements


Method 2: Creating Simulated NPOESS Sensor Data Streams by Modeling Components and Physics Elements Mission/Orbit Sensor Sensor/Spacefrom Sensor **Variables** craft Factors **Variables Contractors Environmental** Scenes: **Atmospheric Conditions Simulated** Sensor **Radiative Simulated** Radiances at **Models Transfer Background Radiometric Aperture Conditions** Model **Spacecraft Temperatures** Convolution "Truth" EDR **Ancillary Value** Data Metrics, Plots. **Graphics** Science Retrieval **Evaluate EDRs** Code Retrieval Performance to Data **Operational Processing** Compute Retrieval **System Statistics** Code

The NPOESS Program Leverages the Knowledge Base in the Weather and Science Community

- Government Teams
 - Operational Algorithm Teams (OATs)
 - Advisors to the NPOESS Government Integrated Program Office (IPO)
 - Approx. 100 members and advisors drawn from across government and academia
 - OATs advise IPO on single and multi-sensor EDR integration into the ground system including algorithm performance
 - NASA NPP Science Team
 - Advisors to NASA NPP management at NASA Goddard
 - Specific science projects related to NPP; focus is on Climate applications and EOS to NPOESS continuity
- NGST Contractor Teams
 - Subcontracts for specific algorithm development and improvement work
 - Algorithm development companies
 - Experts from academia
 - Goal is to utilize available heritage experts and maintain continuity of effort
 - NGST Science Advisory Team (SAT)
 - Advisors to NGST Program Management
 - Small team of national recognized Weather/Remote Sensing experts led by Dr. J. Friday

Sound Science and Processes, Sound Operational Algorithms

End product is based on

- Sound science that represents the combined knowledge of heritage scientists
- > Heritage and NPOESS sensors
- > An experienced aerospace industry base
- End product is maintained by
 - Continuous feedback via cal/val monitoring
 - Improvement at multiple levels by the using community as well as government program office and contractor

Heritage Scientists

On-Orbit Cal/Val

VIIRS Sensor,
VIIRS Science
Code, VIIRS
Theoretical Basis
Documents

Heritage: MODIS Sensor, MODIS Science Code,
MODIS Theoretical Basis Documents;
Other Missions